Re-Crafting Mathematics:
Early Lessons Learned at the Intersection of Textile Crafts and Math

Sophia Bender
The Creativity Labs
Indiana University
1900 E. 10th St., Rm. 519
Bloomington, IN 47408
sobender@indiana.edu

Kate Samson
The Creativity Labs
Indiana University
1900 E. 10th St., Rm. 519
Bloomington, IN 47408
knsamson1293@gmail.com

ABSTRACT
This paper describes Re-Crafting Mathematics, an investigation of the intersection of traditionally feminine crafting practices and mathematics. This project is an extension of our previous work in learning and education through design, craft, and computation. One key goal of this work is to explore the meaningful implications of traditionally feminine crafting practices in Science, Technology, Engineering, and Mathematics (STEM) learning environments so that we may address the underrepresentation of women and girls in lifelong STEM learning.

Categories and Subject Descriptors
K.3.0 [Computers and Education]: General

General Terms
Design, Theory

Keywords
Creativity, Community, Computation, Diversity, Education, Inclusion, Females, Learning Environments, Making, Mathematics, Participation, Patterns, Spatial Reasoning

1. INTRODUCTION
Greater awareness of the female minority in STEM fields [2] has led to a variety of inclusion initiatives in formal education. Such initiatives aim to create learning spaces in which women and girls are comfortable to engage in computational practices. However, the importance of hands-on, interest-driven learning and the value of community and sense-of-belonging are often overlooked in the creation of new learning environments. In addition, many of the teaching tools used in STEM instruction are often implicitly male-gendered (e.g., traditional circuitry learning kits with wires, bulbs, and bulky batteries [6]). In particular, math instruction suffers from an over-reliance on abstract and hypothetical problem-solving that does not connect the mathematical concepts to meaningful, real-world relevance.

Rooted in the theoretical tradition of Papert’s constructionism, which posits that learning occurs best when learners can create personally meaningful, shareable artifacts [1], [4], we turn to the domain of traditionally feminine crafting practices - such as knitting, crocheting, sewing, weaving, and quilting - as an underexplored avenue for concretizing mathematical instruction. These crafts require a range of mathematical thought processes. For example, a successful purchase of materials needed for a textile piece hinges on accurate estimation by the maker. In addition, the deviations from pattern measurements may require the ability to manipulate fractions and proportions. Here, we narrow our focus to ongoing ethnographic studies in the areas of sewing and knitting. We present a synthesis of observed and hands-on learning experiences. We highlight compelling observations in formal and informal learning spaces, and communicate the potential for future development of teaching tools based on the emergence of mathematical concepts in sewing and knitting crafting practices.

Descriptions of our learning experiences underscore the importance of hands-on instruction in crafting. Further, our observations suggest that the sense-of belonging in crafting communities aids in the teaching and development of new skills, helping to motivate makers to continue to engage in crafting activities.

In conclusion, we issue a call for hands-on, interest-driven, inclusive, design-based teaching methods, which are rooted in our experiences, and which allow mathematicians, makers, and educators to better theorize the intersection of craft and computation in formal education institutions.

2. EMBEDDED ETHNOGRAPHY
The first phase of this research comprises a series of detailed cognitive ethnographies of local crafting communities [7]. We began by embedding ourselves in local craft communities. Through detailed field notes, interviews, and involvement in the communities’ everyday activities, we have become part of the communities in which knitting and sewing exist as artful practices. Our embedded knitter spent time in a local yarn shop that, besides selling all the implements needed for knitting, crochet, weaving, and spinning, also offered classes in these crafts. The embedded sewer investigated a community that specializes in upcycling and mending of clothing in the local public library, as well as a new teen space in that same library where sewing is just one of the many crafts that teens engage in.
Our field notes on these spaces include details of crafter skill level and personality, language used in the crafting instruction, inferences of the use of gesture in teaching, and notes of the space in which the learning takes place. These observations focus on individual crafters as well as collaborative groups of crafters. The ethnographers are careful to note details of the space that facilitate the learning experience and lead to the development of a relationship between individuals in the space, such as the location of instructor and student in relation to each other.

An important component of the embedded ethnographies is to actually engage in the craft. Both ethnographers started as novices in their chosen craft, so we could observe firsthand how the learning curve works in these spaces, and what kinds of valued disciplinary content—especially with respect to mathematics—were necessary to successfully produce products of increasing complexity. The ethnographers were careful to document the value of mistake-making in skill acquisition as their own crafting skills developed.

The knitter began with a series of scarf projects that allowed for the development of technical skills. She has progressed to more complex hat and garment projects, which include color work. Learning to knit projects of higher complexity enables her to combine her curiosity in code-like patterns with her interest in design and soft, fiber materials. Meanwhile, the sewer chose to sew cosplays—costumes of characters from media properties. She has created clothing items like a sailor collar, skirt, high-collared robe, hooded cloak, and shorts. Sewing cosplays is her way of exploring her interests in geek media and connecting sewing to youth culture, since the vast majority of cosplayers are teens and young adults.

3. EXPLORATION OF MATH IN CRAFT

In our study of sewing and knitting, we encountered many ways in which we had to apply math in a concrete manner in order to accomplish our project goals.

3.1 Estimation

Textile craftwork involves estimation at many stages in the crafting process. Prior to the initialization of a project, the maker must approximate the amount of material that must be obtained. In order to complete the project successfully, this material should be obtained at one time, as dye lots often change over time, and slight variations in color could disrupt the crafter’s design for the piece. Many crafters develop a personalized style or trademark in their work, which can lead to variations in estimation. Such variations are often rooted in aesthetic preference.

Sewing: Because characters’ outfits often do not look like ordinary clothing, cosplayers usually cannot simply buy patterns for them at a craft store and instead must use fan-created guides and patterns found online. For the cosplay involving a hooded cloak and shorts all made out of the same color fabric, the online patterns did not provide an estimation of amount of fabric needed. The embedded sewer had to measure her own body according to the measurements provided in the patterns, and then use that to calculate her own estimations, including seam allowance, of how many yards of fabric the pieces would require. This also showcases how important the mathematical skill of measuring is to sewing.

Knitting: The most accurate measure with which to measure yarn is in yards. The knitter must consider the weight of the yarn when making estimations about the yardage. For example, fine yarn is much lighter than bulky yarn and yields a greater number of stitches per inch. This means that a project made with fine yarn will require a greater number of yards of yarn. The embedded knitter chose to make pieces of slightly larger or smaller size than the size noted on the patterns she worked with. This design preference required the embedded knitter to use a different amount of yarn from the amount specified on the pattern. The embedded knitter learned to make accurate approximations based on yarn weight and project size.

3.2 Counting, Addition, & Subtraction

Knitting: Arithmetic operations are required in knitted craft, for the knitter must count the number of stitches in each row to ensure consistency and accuracy with respect to the pattern. 3-Dimensional patterns, such as hat projects, required the embedded knitter to use increase and decrease techniques in order to add or subtract the number of stitches in a given row. These techniques required the embedded knitter to call on arithmetic skills learned early in education.

3.3 Ratio and Proportion

Sewing: Sewers sometimes encounter patterns that do not fit their body size, and must use ratios and proportions to increase or decrease the pattern’s size. For instance, when making the robe, the embedded sewer and her more experienced helper started with a shirt pattern the latter had made years ago. They had to enlarge it and add to it in order to create the effect of looseness that the robe required.

Knitting: To custom-fit knitted pieces to the individual, the knitter must be able to transform the pattern through the manipulations of ratios and proportions. For example, the embedded knitter chose a scarf pattern that called for lightweight wool, but she chose to make a larger scarf from chunkier wool. Knitters must manipulate ratios and proportions in order to determine the amount of yarn needed for the pattern so that the piece will be created with the desired fit or look.

3.4 Spatial Visualization

Sewing: Every sewing project that involves creating a piece of clothing involves envisioning what 2-dimensional fabric will look like when worn by a person in 3 dimensions. Sewing patterns are also on flat, 2-dimensional paper, and require 3-D visualization in order to understand them. An example from the sewer’s experience is the first time she was instructed to sew something—in this case, a sailor collar—inside-out: she had to mentally envision what the collar would look like when it was turned right-side-out, so she could figure out which sides of the fabric would be outwardly visible.

Knitting: Like a sewing pattern, a knitting pattern is printed and shared on 2-dimensional paper spaces. However, knitted projects are often 3-dimensional. One example from the embedded knitter’s experience is the hat project she began earlier in her knitting ethnography. She learned to view the hat pattern in 2 dimensions and then visualize the object in 3-dimensional space.
Further, the embedded knitter engaged in spatial rotation of the
knitted object when she imagined the knitted piece from different
angles before completion.

3.5 Symmetry
Sewing: Most outfits are meant to be bilaterally symmetrical, so
sewers want both the left and right halves of an outfit to be
identical mirror images of each other. This often means folding
fabric at the midpoint and drawing half of a pattern on the fabric,
then cutting through both layers of the folded fabric so both sides
will turn out identical. The embedded sewer had to do this
numerous times in both the robe and hooded cloak cosplay.

4. OTHER VALUED DISCIPLINARY CONTENT
The embedded sewer incorporated content from disciplinary areas
other than math when creating her cosplays. For instance, she
included science and technology by sewing lights into her
costumes with conductive thread, which our lab’s previous work
has shown to be effective for learning about circuits [5]. She was
motivated to use new high-tech maker tools like 3D printers and
laser cutters for the first time in order to create accessories and
details for the costumes. Like any sewer, she had to keep in mind
aspects of aesthetics and artistry in order to ensure her costumes
looked pleasing to the eye. And because she had to interpret
characters from media in order to create their costumes, she was
also engaging in literacy practices. This shows the broad
educational applications that are possible when other spheres are
incorporated into textile crafts.

5. HANDS-ON LEARNING & MAKING
There is no way to learn how to sew or knit without actually
engaging in sewing or knitting. It is an inherently hands-on
process. It often involves the creation of something specific, so
the crafter sets a goal to create a concrete product that can then be
worn and shared with others, fitting in exactly with constructionist
ideals [1], [4]. To properly create sewn and knitted projects,
crafters must attend to and accurately complete the math and other
required disciplinary content. It provides motivation to learn this
content that an abstract, school-bound lesson might not do.

Another aspect of constructionist learning that Papert [4]
emphasized was the personal meaningfulness inherent in a
product that a learner has constructed for herself. From our
experiences and from others’ experiences that we have observed,
we know that crafters attach special meaning to the products they
have made, even if they did not turn out exactly as initially
planned. There is a sense of ownership and pride that cannot be
derived from a mass-produced object or from an abstract math
problem worked out on paper only.

6. INTEREST-DRIVEN LEARNING
Another goal of the Re-Crafting Mathematics project is to tap into
youths’ interests so that they become intrinsically motivated to
pursue the craft and thus, learn the math involved. For instance,
the embedded sewer pursued cosplay because otherwise, she
would not have found sewing to be very exciting. Her
observations of the library’s teen space have revealed some
burgeoning interest in crochet, knitting, and sewing. One fruitful
avenue appears to be engaging the teens’ existing interests in pop
culture media. For instance, at a puppet-making workshop, most
of the teens chose to create puppets based off of their favorite
books, movies, and video games. There is also a significant group
there that has either shown interest in or already engages in
cosplay.

The potential of this is that while many youth, especially girls,
feel alienated from the math they learn in math class [3], if they
are intrinsically motivated to pursue textile crafts and come to see
the math involved in them, then they may come to identify more
personally with math. Since textile crafts are a domain
traditionally associated with women and femininity in our culture,
girls may feel more invited into a math class that involves textile
crafts. In this way, we hope this project will help to lead to more
gender parity in STEM fields, as well as greater innovation in
those fields as more diverse perspectives bring in unexpected
ideas from textile crafts.

7. ROLE OF COMMUNITY IN LEARNING
In schools, where an overreliance on grades can sometimes lead to
an overemphasis on individual performance and competition, the
communal aspects of learning can often be overlooked. In textile
crafting communities, however, the apprenticeship models of
artisanal craftsmanship are alive and well. As the embedded
ethnographers observed in their field sites, this type of learning
often involves a more expert crafter working one-on-one with a
novice to show them the ropes and help them debug mistakes.

Our observations in formal and informal learning environments
show that hands-on learning scenarios, in which more experienced
crafters pass crafting practices to novice crafters through spoken
and gestured instruction, are beneficial for the creation of
community in education and interactive learning spaces. The
instructor can speak to the student directly while she shows the
complexity of the crafting technique. The instructor can also
observe the mistakes of the student in real-time, which encourages
communication between the instructor and the student. Such
observations point to the importance of community to effective
communication practices between student and instructor in
learning environments.

In addition, the modern era allows the expansion of crafting
communities onto the internet. Knitting has social networks, like
Ravelry, which allow crafters to post, share, and borrow patterns
for garments and other projects. Similarly, cosplay would be
much more difficult without the online guides and tutorials of
those who have made the same costume before.

Community also provides a meaningful context, and thus,
motivation to engage in textile crafts. If a teen’s friends are
making cosplay costumes and are going to have fun pretending to
be their favorite characters at a fan convention, then that teen will
likely be motivated to participate as well. In addition, handmade
gifts given to family and friends are often viewed as more special,
and thus generosity toward loved ones can be the community
aspect motivating textile craftwork.

8. IMPLICATIONS FOR EDUCATIONAL PRACTICE
One goal of this line of research is to develop novel prototypes for
teaching tools in STEM learning environments. So far, our
experiences in the field have shown us the importance of hands-on, interest-driven, concrete learning, pursued in a context that values and is inseparable from the community. It has given us personal encounters with the math and other disciplinary content involved in textile crafts. To bring these lessons into the classroom, we will have to ensure that interest-driven, concrete making remains a priority. To retain the community aspect, perhaps expert crafters from crafting communities can be brought into the classroom, crafting circles can be established during after-school time for those who want to pursue it further, and social networking and internet resources can be utilized. As for the math-related content, some of it is inherent, but other parts may need to be scaffolded, such as by teaching students to fold fabric before cutting to ensure bilateral symmetry.

Ultimately, we see great potential in the use of textile crafts for the learning of math and other subjects, in order to make math learning more concrete and relevant than it usually is, to tap into students’ preexisting interests, and to make math more inviting to girls.

9. ACKNOWLEDGMENTS
The work in this paper was supported by a grant from the National Science Foundation (DRL -1420303) to Kylie Peppler. The views expressed are those of the authors and do not represent the views of the supporting funding agencies or universities.

10. REFERENCES